

High-Temperature Instrumentation

Randy A. Normann

Sandia National Laboratories

Extreme Environment Workshop May 14-16, 2003

Background

- First to test SOI (Silicon-On-Insulator) electronics to 300C.
- The Honeywell SOI
 microprocessor shown operated
 up to 310C continuously
 reporting to the screen below,
 "Do you call this hot? Turn up
 the heat!!"
- A new HT electronic project soon started at Sandia.

Geothermal Stands at the Top of HT Electronics Needs

To meet that need a new level of commercially available HT SOI, (Silicon-On-Insulator), is being developed, offering almost twice the military temperature range.

The need for high-temperature electronics above the military specification is growing.

However, the geothermal

market is the only "real market above 225C.

Geothermal Program Objective:

To develop and demonstrate new high temperature, unshielded geothermal logging tools and systems; seeding the geothermal industry with this new technology.

High-temperature means 200 to +300C. Seeding means to teach others well enough for them to continue development.

Why Unshielded Electronics?

- To reduce tool cost
 - The Dewar cost is \$8-16K, HT electronics cost \$5-8K; however these costs will fall as production increases
- To reduce \$\$\$ risk to operators
 - Eliminate or reduce tool loss to heat damage inside the well, higher likelihood of recovering lost tools
 - Wells will NOT require cooling before logging
- With increase time downhole
 - Casing inspection tools work best when run slowly
 - Continuous downhole monitoring for production testing
 - New MWD tools to improve geothermal drilling
- Reduced tool diameters
- Potential for 500-600C well logs

SOI Logging Tool Demonstration

The ASIC

Bearfoot Log, 240C

- March 2001, the Sandia designed HT83SNL00 was delivered!
 - It greatly enhances the HT SOI tool capability while reducing tool diameter
- Nov 2001, completed a long term downhole test inside a 240C geothermal well for some 40hrs.
- After well log, the tool was placed within an oven at 225C for ~1000 hrs!!!

SOI High-Temperature Unshielded Tool

Developing New Components

Capacitors

- Johanson Dielectrics: New dielectric is more stable at 200-300C.
 Presently building 250, 0.1uF capacitors for life testing at 250C.
- Sigma Technologies: 1uF and 20uF +200C Polymer capacitor starting production
- Calramic: Testing a 1uF, 300C ceramic capacitor
- Novacap: Presently being used in the Sandia SOI tool
- More work is needed in 10-100uF capacitors at +200C

Printed Wiring Boards

- Multilayer: Presently used in Sandia SOI tool
- NREL: Karen Moore working on new glue less ceramic board for over 300C. Easier to make, can be 12 in diameter and improved thermal conductivity.

Developing New Components

Pressure Sensors

- Entran: Developing 300C strain bridge type
- Quartzdyne: Working to improve existing quartz gage to 225C

Clock Oscillators

- Linear Measurements: Using a new type of crystal for +300C
- Quartzdyne: Presently makes 250C crystal. Working on a 300C version

Solders

- Sandia: Paul Vianco
- A lot of work is needed here

Developing New Components

Vibration

- Silicon Designs: Nearing completion of first prototype 2 G MEM-SOI vibration and inclination sensor rated for 275C
- Sandia: Developing an SOI interface for the Endevco 275C piezoelectric vibration sensor line

Steering sensor package

- Steven Rountree: Developing a steering sensor for 250C.
 - Measures azimuth and inclination for dead reckoning the drilling location

Fiber Optics

- Fiber Guide: We have ~9000 ft of low phosphorous fiber for testing.
 - 3000 ft of fiber is ready for wellbore deployment at 200-250C

Developing New Components: Batteries

Molten Salt

- Molten salt batteries require some heat to activate.
- Some can be recharged (at temp)
- Have a very long shelf life, military uses
- Eagle-Picher Ind: Developing a thermal battery for 150-250C. They have the capability of thermal batteries already for 250-500C.
 (Sandia has a researcher looking at room temperature thermal batteries)

Solid State

- Very wide operating temperature range, high internal resistance
- Green
- General Atomics: Keep-A-Live battery for room temperature to 250C (500C). Presently working to reduce internal resistance. Could be used as primary power.

Thermal Battery Results

• Rechargeable, Thin, Single Cell Battery

(Test Current = 60 ma)

• We have batteries for 250C and above

- E-Spectrum: Working on a Universal Logging Computer for 250C.
 Presently requires ROM for the SOI HT83C51 processor. They have a working analog 8 channel differential measurement electronics for 250C.
- PhotoSonic: Developing improvements for the Sandia SOI tool. May include existing flow measurements using HT PhotoSonic 300C optical flow sensor.
- LEL Corp.: A mechanical fiber optic sensor for temperature and pressure measurements

Others

- Rockwell International: Using Sandia SOI for 225C motor controller
- Tecnomare SpA: Using Sandia SOI for Seismic Tool
- Instituto de Investigaciones Eléctricas: Using Sandia SOI for Gamma Tool

- HT Electronics Standard needs JPL/NASA
- Low drift HT instrumentation amplifier
 - Tons of sensor applications
- Voltage reference
 - Honeywell's SOI Vref is limited to 260C
- EEPROM
 - Fraunhofer Institute has demonstrated an SOI EEPROM for data storage but discontinued the program
- Solder
 - This is a manufacturing problem for HT systems
 - Reduced reliability

Education: Learning Aids

- Technical learning aids are extremely important
 - Giving the industry a low temperature evaluation board

- » A low temperature version is cheap to build and lets industry develop new tools in-house at very low cost. This way each company can seek a competitive edge by making their tool customized.
- » Documentation is good but a prototype is worth a 1000 man-hours.
- Jump start select geothermal service companies with a beta high-temperature versions to get them fully started.

Education: Fabrication

180C and above basics

- Clean everything
 - We normally soak all mechanical housings at 250-300C for 48 hours to burn out machine oils
 - Remove all water or water vapor. We evacuate the assembled tool for 24 hours at 200-250C then back fill with Ar.
- Polyimide printed wiring boards ok to 240C are improved by having no traces on the exposed layers
- No good solders. We use high lead solder and water soluble flux.
 Must take care in cleaning the flux.
- Preheat electronic components during assembly
- Use only metal to metal seals

• 250C and above (limited experience)

- We laser weld connections where possible
- We machine ceramic to form mounting fixtures using Beryllium-Nickel sockets

Education: Reports

- Battery report just released
- HT2L High-Temperature Long-Life Standard
 - Draft is out
- Azimuth measurement at 250C, report presently being written
- Capacitor challenge being set up should result in a report in Sept, 2003
- Fabrication procedures continue to be developed, report in March 2004
- Long-term demonstration report in June 2004

Conclusions

- Sandia is helping to demonstrate that SOI technology is real.
- Seeding the geothermal service companies to excite new development. Providing the tools they need to continue their own development.
- We are working hard to move this technology into the field, raising the industry standard on high temperature drilling and well logging.
- We are willing to help others reach their HT goals